Select Country

 
877-783-6728 (877-StemSave)

StemSave Blog

Stem Cells Help Children with Cerebral Palsy

Posted by [email protected] on Nov 15, 2017 4:45:00 PM

A clinical trial has shown that autologous [the patient’s own] stem cell infusions can accelerate improvements in motor function of children with cerebral palsy. Cerebral palsy occurs when the brain is damaged either before or during birth and has varying levels of severity, but in all cases, affects movement and speech. CP children typically receive physical and occupational therapy and will make subtle improvements with age, as their bodies develop. In the double blind clinical trial in which some children were given a placebo and others were given varying amounts of stem cells, those who received approximately 25 million cells per kilogram of body weight showed substantial improvement in motor skills when tested a year following the treatment. The improvement was significant when compared to the expected normal yearly improvement CP children typically make, and was also greater than that of the children who received the smaller dosage. In the next phase of the clinical trial, researchers seek to determine whether continuous stem cell infusions could improve motor function even more significantly.

Read More

Topics: cerebral palsy, stem cell treatments, regenerative medicine, cerebral palsy treatment

Dental Stem Cells Provide Insight into Autism

Posted by [email protected] on Nov 11, 2017 8:45:00 AM

Dr. Patricia Braga and her team at the University of Sao Paolo, in collaboration with Alysson Muotri, professor of pediatrics and cellular and molecular medicine at UC San Diego, are using dental stem cells from donated baby teeth to grow neurons and examine the role of astrocytes in the expression of Autistic traits such as language impairment, repetitive behaviors and sleeping difficulties. Dr. Braga has used dental pulp stem cells from two groups of  patients - children with Autism and a non-autistic control group, and directed their stem cells to differentiate into brain cells in vitro. When allowed to grow, the stem cells developed into clusters that contained the star-shaped brain cells called astrocytes, as well as fully grown neurons. Upon closer inspection, the astrocytes and neurons from children with Autism showed significant functional differences compared to the control group cells. Autistic astrocytes release excessive amounts of an inflammatory molecule called interleukin-6 (or IL6), which, in concentrated amounts, can harm nearby neurons and hinder their functionality. Additionally, the neurons from Autistic children were found to fire less frequently, form fewer synapses (connections with other neurons) and release less glutamate, which is used to excite surrounding neurons and transmit signals.


Read More

Topics: autism and stem cells, dental stem cell, autologous dental pulp stem cells, regenerative medicine, Autism Spectrum Disorder

Diabetic-PAD Symptom Relief with Stem Cells

Posted by [email protected] on Nov 8, 2017 4:45:00 PM

A study at the University of Illinois found that stem cell injections can promote angiogenesis, or blood vessel generation, which improves the circulation problems associated with diabetes. The condition in question is peripheral artery disease or PAD, in which patients suffer from restricted blood flow caused by plaque on the walls of the arteries; most typically in the leg. This is due in part to poor circulation in diabetic patients which can cause moderate to severe pain during any movement of the leg. It can also lead to ulcers, sores and, in severe cases, gangrene, which can lead to amputation. In an animal model, stem cell injections were shown to improve blood flow and circulation in problematic areas. They also altered the gene expression of surrounding cells to reduce inflammation, which typically exacerbates the problem. PAD currently lacks effective treatments options and is difficult to diagnose until it has progressed severely hence, the study points to a potential breakthrough therapy that utilizes the patient’s own stem cells.

 

Read More

Topics: diabetic wounds, PAD, stem cell treatments, regenerative medicine, autologous stem cells, diabetic treatment

Feeding the world with Stem Cells

Posted by [email protected] on Nov 3, 2017 4:45:00 PM

China is investing around $300 million into clean tech companies producing environmentally friendly, lab-grown meats. The process, in which stem cells are taken from a live animal and differentiated into meat-tissue without harming the animal, has been gaining ground, with 8 companies around the world working to bring accessible, and far less wasteful, protein to the public. “Clean meat” advocates project that the processes utilizes a tenth of the resources and land that the livestock industry currently uses, and contributes less to global pollution. Recent data by the UN Food and Agriculture Organization states that 14.5 % of all greenhouse gas emissions, which contribute to global warming, come from the livestock industry, and lab-grown meat aims to change that. “There’s no better way to combine [fighting climate change, pollution and food safety issues] than by developing and scaling clean meat,” says Peter Verstrate, CEO of the clean meat company, Mosa Meat.

Read More

Topics: stem cell differentiation, stem cell use, clean meat

Growing Functional Organs with Stem Cells

Posted by [email protected] on Nov 1, 2017 4:45:00 PM

Researchers at Harvard Medical School have utilized stem cells to grow a functional small intestine in a lab. Using human stem cells, the researchers were able to differentiate them into intestinal cells and induced them to form a fully functional intestinal tissue. Previous studies have been successful at growing miniscule segments of the organ, but this innovative study has homed in on a method for compiling smaller, stem cell-derived tissue into an organoid that could soon be available to use in transplants as replacement for damaged organs. Patients who suffer from gastrointestinal tract ailments could benefit from this, in addition to patients who have had portions of their digestive tracts removed due to cancer.

Read More

Topics: stem cell treatments, regenerative medicine, autologous stem cells, lab grown organs

Stem Cell Wound Treatment Enters Phase II Clinical Trials

Posted by [email protected] on Oct 19, 2017 5:00:00 PM

Sanford Health is heading into the second phase of clinical trials involving autologous (the patient’s own) stem cells to treat non-healing wounds and ulcers on the body. The trial will be recruiting patients 18 and older to continue testing the efficacy of stem cells in treating wounds that would not heal due to a person’s preexisting conditions. People with weakened immune systems could also benefit from this treatment, given that it would prevent the enormous risk of infection that non-healing wounds pose. Additionally, the treatment could even be applied to heal wounds from surgeries, expediting recovery time dramatically.

Read More

Topics: diabetic wounds, stem cell treatments, regenerative medicine, autologous stem cells, non-healing wounds, leg ulcers

Dental Stem Cell Therapy for Stroke Victims

Posted by [email protected] on Oct 12, 2017 4:45:00 PM

Researchers at Adelaide University in Australia are conducting research into the application of dental pulp stem cells to treat neurological damage due to stroke. Cell based treatments for the detrimental effects of stroke could improve quality of life by promoting neural regeneration, neuroplasticity, vascularization and immuno-modulation. When an ischemic stroke occurs, a major artery in the brain becomes blocked due to a blood clot, and this deprives part of the brain of nutrients and oxygen. Depending on the length of the block, major parts of the brain can suffer neuronal death causing severe and permanent damage. This damage includes paralysis, vision problems, memory loss and language difficulties. Currently, there are no effective treatments for the effects of stroke, and because dental stem cells are derived from the neural crest during embryonic development, a dental stem cell based treatment shows promise in significantly improving the quality of life for stroke victims.

Read More

Topics: Chronic Ischemic Heart Disease, dental stem cells, mesenchymal stem cells, regenerative medicine, stroke treatments

Dental Stem Cells for Bone Regeneration - Clinical Trial Underway

Posted by [email protected] on Oct 10, 2017 4:45:00 PM

The team at Central Hospital in Nancy, France is conducting research utilizing dental stem cells to regrow and restore bone density. The trial aims to direct dental mesenchymal stem cells to differentiate into engineered osteoblasts, as well as promoting angiogenesis, which is necessary given that bones typically lack sufficient vascularization to make efficient repairs. The benefit of using autologous [the patient’s own] stem cells makes this an effective treatment option that does not pose a risk of rejection. By directing stem cells to promote bone mineralization and endothelial growth, as well as creating vascularization to promote healing, stem cells can be applied to a variety of bone trauma and deficiencies.

Read More

Topics: bank dental stem cells, bone regeneration, mesenchymal stem cells, regenerative medicine, dental stem cell use

ALS Phase III Clinical Trial Launched Using Stem Cells

Posted by [email protected] on Oct 2, 2017 4:45:00 PM

Phase III clinical trials for a stem cell based ALS treatment has been initiated.  ALS, or amyotrophic lateral sclerosis, is a disorder in which motor neurons in the body rapidly degenerate, and the treatment aims to prolong the survival rate of afflicted individuals by using autologous [the patient’s own] mesenchymal stem cells (the same stem cells found in teeth), which can be differentiated into fully-functioning neurons. The trials, to be conducted by BrainStorm Therapeutics, exploits the company’s proprietary technology [NurOwn], which utilizes mesenchymal stem cells. BrainStorm obtains these cells from the patient, expanding and differentiating the stem cells prior to application. The stem cells begin producing neurotrophic factors that facilitate neuronal growth and regeneration.

Read More

Topics: ALS, patient's own mesenchymal stem cells, stem cell treatments, regenerative medicine

Bone-afide Stem Cells

Posted by [email protected] on Sep 29, 2017 4:45:00 PM

Researchers at University of Glasgow have developed a new “nanokicking” technology, which directs mesenchymal stem cells to precisely differentiate into a bone material for use in fracture repairs and bone grafting. By subjecting the stem cells to ‘nanokicking’ – precise, nanoscale vibrations, while the cells are in a collagen gel, these cells can more effectively transform into bone cells capable of replenishing damaged or depleted bone mass. Current bone grafts obtained from patients themselves nearly never yield enough bone material to be clinically relevant for severe injuries, and donor bone grafts have a high risk of rejection hence, autologous stem cell grafts represent an optimal treatment option for patients suffering from any type of bone trauma or deficiency. With bone being the second most grafted tissue [behind blood], ‘nanokicking’ the patient’s own stem cells would significantly impact patient outcomes following reconstructive, maxillofacial and orthopedic surgeries.

Read More

Topics: bone density, bone regeneration, mesenchymal stem cells, regenrative medicine, bone grafting

AAOMS

AAOMS - American Association of Oral and Maxillofacial Surgeons

 

As the industry leader, StemSave is the only stem cell banking service to be designated as an ASI approved program.

Subscribe to Email Updates

Join our Newsletter

Recent Posts

Posts by Topic

see all