stemsavelogo

Select Country

877-783-6728 (877-StemSave)

StemSave Blog

taylor@stemsave.com

Recent Posts

DoD Sponsors Eye Injury Stem Cell Treatment

Posted by taylor@stemsave.com on Sep 15, 2018 1:09:00 PM

The University of Illinois at Chicago has received a $5.25 million grant from the Department of Defense [DoD] to develop clinical trials using stem cells to treat eye injuries and expedite healing. The treatments utilize mesenchymal stem cells (the same type of stem cells found in teeth) due to their anti-inflammatory and immunomodulatory properties, which can help heal scarring and preserve eyesight. The treatments are targeted for combat veterans injured due to explosions and chemical burns to the eye, but could also be used to treat chronic corneal injuries in other patients.

Read More

Topics: eye injuries, corneal burns,, mesenchymal stem cells

Stem Cells Root Out Root Canals

Posted by taylor@stemsave.com on Aug 16, 2018 10:45:00 AM

Doctors at the New Jersey Institute of Technology have developed a stem cell hydrogel designed to keep teeth alive following a root canal. This revolutionary, biological hydrogel is said to stimulate angiogenesis, which is the growth of blood vessels, and this key factor could help teeth remain both alive and more fortified, compared to a traditional root canal treatment. When patients require root canals, the decay inside the pulpal chamber and canals is cleared and replaced with gutta percha. This eliminates the infection, but also renders the tooth dead typically leading to the loss of the tooth entirely later on. The hydrogel, seeded with dental pulp stem cells and working in conjunction with the hydrogel’s promotion of angiogenesis,  has the potential to repopulate the tooth with living, functioning dental pulp and restoring function to the tooth.

Read More

Topics: root canal, root canal therapy, stem cell therapy, stem cell treatment, tooth regeneration

Stem Cells Take Flight

Posted by taylor@stemsave.com on Jul 3, 2018 10:29:00 AM


Organs-on-Chips are set to be studied in zero gravity at the International Space Station. Astronauts who go into space have been known to experience changes in their health and immune response, but until recently, the reasons for these changes remained largely unknown. Previously, animals were sent as a way to determine the long-term health effects of being in space. However, since every organism functions differently, this approach, while useful, had obvious drawbacks. Organs-on-Chips [OOCs] are an innovation created by a collaborative effort of the Wyss Institute of Harvard University and the Massachusetts Institute of Technology, among others. OOCs are small vessels that utilize stem cells to create various tissue types to simulate the conditions inside human organs. If the tests prove successful, these tiny chips  will be the closest researchers get to estimating the effects of space travel on human organ function - aside from sending out actual astronauts.

Read More

Topics: stem cell organs, organs on chips, stem cell research, regenerative medicine

Stem Cells Used to Identify Genetic Precursors to Schizophrenia

Posted by taylor@stemsave.com on May 29, 2018 6:15:00 PM

Researchers at USC [University of Southern California] have utilized stem cells to track neuronal growth and identify specific genes that appear to be responsible for the development of schizophrenia, bipolar disorder and depression. The study linked the DISC1 gene to the development of schizophrenia, which currently does not have effective treatments and causes disproportionate disability compared to other neurological disorders. Like many neurological disorders, the source of schizophrenia has been ambiguous and this research, with the use of stem cells, is helping to navigate this disorder. Through the utilization of stem cells, the study determined how genes like DISC1 function in the body, and their downstream impact on protein function and neurotransmitter production by tracking the gene expression. 

Read More

Topics: schizophrenia, neurological disorders, neurological treatments, stem cell research

Stem Cells Get Closer to the Dinner Table

Posted by taylor@stemsave.com on May 19, 2018 11:00:00 AM

“Clean meat” company Future Meat Technologies anticipate they can bring the price of lab-grown, “meatless” meat down to approximately $8 per kg [$4 per pound]. The process involves obtaining mesenchymal stem cells from the animal and differentiating the stem cells into both muscle and fat tissues, which are indistinguishable from those found in standard meat. The meat cooks, tastes and smells exactly like anything you’d get from an animal- however, the biggest hurdle has been its high price. Future Meat Technologies looks to overcome this hurdle by bringing costs down, by differentiating stem cells more efficiently and scaling up production.

Read More

Topics: clean meat, stem cell technology, lab grown meat

 Growing Teeth with Stem Cells                       (a.k.a. Taking a Bite Out of Implants)

Posted by taylor@stemsave.com on Mar 14, 2018 12:00:00 PM

Researchers at Tufts University School of Dental Medicine are creating bioengineered teeth from dental stem cells, with the ultimate goal of replacing dental implants. The innovative approach utilizes a hydrogel that has been developed to encapsulate dental stem cells enabling them to differentiate and grow into buds that can be implanted to grow into healthy teeth. In a pre-clinical model, the procedure involves using the hydrogel to provide a scaffold for the stem cells to grow in vitro, followed by the implantation of the scaffold in vivo, where the stem cells developed into whole tooth structures.

Read More

Treating Muscular Dystrophy with Stem Cells

Posted by taylor@stemsave.com on Dec 13, 2017 4:45:00 PM

UCLA researchers have developed a potential stem cell based treatment for Duchenne Muscular Dystrophy (DMD). This degenerative muscular disorder - caused by a genetic mutation in a protein essential for skeletal muscle function - primarily affects young men and boys, degenerating skeletal muscle to the point where it eventually wastes away. This severe degeneration of skeletal muscle results in almost a complete lack of voluntary movement. The UCLA team used the gene editing technology, CRISPR, to repair the mutated gene for the protein in stem cells obtained from the subjects and reintroduced the re-programmed muscle cells back into the subjects. In an animal model, the re-programmed cells successfully produced the dystrophin protein, reversing the degeneration of the skeletal muscle. The team has also conducted a second set of biological markers to ensure complete differentiation into adult muscle cells.  

Read More

Topics: Duchenne Muscular Dystrophy, stem cell treatment, regenerative medicine

Stem Cells Reverse MS in Breakthrough Clinical Trial

Posted by taylor@stemsave.com on Dec 1, 2017 12:30:00 PM

A team of researchers at the Hadassah Medical Center in Israel has developed a unique method of applying a patient’s own stem cells to restore mobility following progressive multiple sclerosis (MS). MS is an autoimmune disorder in which the body attacks its own neurons and affects millions of people worldwide. Severely progressive MS leads to complete loss of limb function, memory problems, seizures, and even systemic organ failure. This groundbreaking, double-blind, Phase II clinical trial successfully administered autologous (the patient’s own) mesenchymal stem cells, which were cultured and expanded to clinically significant numbers, and then applied directly into the spinal fluid. The treatment simultaneously addressed the two problems of MS - inflammatory immune response and the destruction of the outer coating of neurons that allows for quick signal transduction thereby engendering a significant increase in efficacy.

Read More

Topics: MS, multiple sclerosis, multiple sclerosis treatment, autologous stem cells, mesenchymal stem cells, patient's own mesenchymal stem cells

Stem Cell Wound Treatment Enters Phase II Clinical Trials

Posted by taylor@stemsave.com on Oct 19, 2017 5:00:00 PM

Sanford Health is heading into the second phase of clinical trials involving autologous (the patient’s own) stem cells to treat non-healing wounds and ulcers on the body. The trial will be recruiting patients 18 and older to continue testing the efficacy of stem cells in treating wounds that would not heal due to a person’s preexisting conditions. People with weakened immune systems could also benefit from this treatment, given that it would prevent the enormous risk of infection that non-healing wounds pose. Additionally, the treatment could even be applied to heal wounds from surgeries, expediting recovery time dramatically.

Read More

Topics: autologous stem cells, non-healing wounds, diabetic wounds, leg ulcers, stem cell treatments, regenerative medicine

Dental Stem Cells for Bone Regeneration - Clinical Trial Underway

Posted by taylor@stemsave.com on Oct 10, 2017 4:45:00 PM

The team at Central Hospital in Nancy, France is conducting research utilizing dental stem cells to regrow and restore bone density. The trial aims to direct dental mesenchymal stem cells to differentiate into engineered osteoblasts, as well as promoting angiogenesis, which is necessary given that bones typically lack sufficient vascularization to make efficient repairs. The benefit of using autologous [the patient’s own] stem cells makes this an effective treatment option that does not pose a risk of rejection. By directing stem cells to promote bone mineralization and endothelial growth, as well as creating vascularization to promote healing, stem cells can be applied to a variety of bone trauma and deficiencies.

Read More

Topics: mesenchymal stem cells, bank dental stem cells, dental stem cell use, regenerative medicine, bone regeneration

AAOMS

AAOMS - American Association of Oral and Maxillofacial Surgeons

 

As the industry leader, StemSave is the only stem cell banking service to be designated as an ASI approved program.

    Recent Posts

    Posts by Topic

    see all