stemsavelogo

Select Country

877-783-6728 (877-StemSave)

StemSave Blog

Facilitating Rotator Cuff Tear Repairs with Stem Cells

Posted by davids@stemsave.com on Dec 7, 2017 4:45:00 PM

The Hospital for Special Surgery has been awarded an $800,000 grant to conduct a Phase II clinical trial utilizing autologous (the patient’s own) stem cells to help mend rotator cuff tears. This sizable grant will be used to treat one of the most common musculoskeletal conditions, particularly in athletes. Surgical repair for rotator cuff tears leave patients with resilient discomfort and pain, and many patients re-tear the muscle and are unable to return to full capacity. Stem cells can ameliorate the treatment process by facilitating recovery. The trial will investigate the efficacy of stem cells in skeletal muscle and tendon tissue regeneration, as well as the reduction of inflammation.

Read More

Topics: rotatore cuff repairs, muscle regeneration, regenerative medicine

Stem Cells Reverse Paraplegia

Posted by devin@stemsave.com on Nov 29, 2017 4:45:00 PM

Researchers at the Technion-Israel Institute have directed stem cells to differentiate into neurons with the potential to repair spinal damage that causes paralysis in the legs, known as paraplegia. In an animal model, subjects suffering injury to their spinal cords, causing them to lose all mobility and feeling in their hind limbs, were treated with human stem cells cultured to differentiate into support factors that promote neural growth and survival. Three weeks after administering the stem cell treatment, 42% of the subjects began either walking or showing significant improvements in bearing weight on their hind legs. Furthermore, over 75% of the subjects responded to stimulation in their hind legs. When compared to the placebo group that received no stem cells, the results were impressive and demonstrate  the immense potential of utilizing stem cells to restore the neural connections in the spine following a traumatic injury.

Read More

Topics: paraplegia, quadriplegia, stem cell paralysis treatment, adult stem cells, autologous stem cells, regenerative medicine, Paralysis

Stem Cell Skin Grafts Save Terminally Ill Child

Posted by artgreco@stemsave.com on Nov 22, 2017 4:45:00 PM

A collaborative effort from German and Italian researchers allowed a child dying from severe epidermolysis bullosa (EB) to lead a healthy, normal life. EB is a genetic disorder which causes the top layer of the skin (epidermis) to become extremely fragile and easily blister-prone. Patients with EB typically do not live past the age of 30, given the exorbitant risk of infections and other complications of having “paper thin” skin, and there is currently no cure. However, a recent experimental skin graft, made from the patient’s own stem cells, allowed a young boy to return to normalcy. The graft’s success comes from a technique of genetic engineering to correct the defective gene that causes EB in immature stem cells, and then develops those stem cells into layers of epithelial tissue and applies them to the patient’s affected areas. Though the risk of such procedures is high, using the patient’s own cells minimizes the risk of rejection and provides a safer alternative to merely enduring this disease.

Read More

Topics: epidermolysis bullosa, stem cell skin graft, regenerative medicine, autologous stem cells

Stem Cells Help Children with Cerebral Palsy

Posted by barb@stemsave.com on Nov 15, 2017 4:45:00 PM

A clinical trial has shown that autologous [the patient’s own] stem cell infusions can accelerate improvements in motor function of children with cerebral palsy. Cerebral palsy occurs when the brain is damaged either before or during birth and has varying levels of severity, but in all cases, affects movement and speech. CP children typically receive physical and occupational therapy and will make subtle improvements with age, as their bodies develop. In the double blind clinical trial in which some children were given a placebo and others were given varying amounts of stem cells, those who received approximately 25 million cells per kilogram of body weight showed substantial improvement in motor skills when tested a year following the treatment. The improvement was significant when compared to the expected normal yearly improvement CP children typically make, and was also greater than that of the children who received the smaller dosage. In the next phase of the clinical trial, researchers seek to determine whether continuous stem cell infusions could improve motor function even more significantly.

Read More

Topics: cerebral palsy, cerebral palsy treatment, stem cell treatments, regenerative medicine

Dental Stem Cells Provide Insight into Autism

Posted by anna@stemsave.com on Nov 11, 2017 8:45:00 AM

Dr. Patricia Braga and her team at the University of Sao Paolo, in collaboration with Alysson Muotri, professor of pediatrics and cellular and molecular medicine at UC San Diego, are using dental stem cells from donated baby teeth to grow neurons and examine the role of astrocytes in the expression of Autistic traits such as language impairment, repetitive behaviors and sleeping difficulties. Dr. Braga has used dental pulp stem cells from two groups of  patients - children with Autism and a non-autistic control group, and directed their stem cells to differentiate into brain cells in vitro. When allowed to grow, the stem cells developed into clusters that contained the star-shaped brain cells called astrocytes, as well as fully grown neurons. Upon closer inspection, the astrocytes and neurons from children with Autism showed significant functional differences compared to the control group cells. Autistic astrocytes release excessive amounts of an inflammatory molecule called interleukin-6 (or IL6), which, in concentrated amounts, can harm nearby neurons and hinder their functionality. Additionally, the neurons from Autistic children were found to fire less frequently, form fewer synapses (connections with other neurons) and release less glutamate, which is used to excite surrounding neurons and transmit signals.

Read More

Topics: Autism Spectrum Disorder, autism and stem cells, autologous dental pulp stem cells, dental stem cell, regenerative medicine

Diabetic-PAD Symptom Relief with Stem Cells

Posted by devin@stemsave.com on Nov 8, 2017 4:45:00 PM

A study at the University of Illinois found that stem cell injections can promote angiogenesis, or blood vessel generation, which improves the circulation problems associated with diabetes. The condition in question is peripheral artery disease or PAD, in which patients suffer from restricted blood flow caused by plaque on the walls of the arteries; most typically in the leg. This is due in part to poor circulation in diabetic patients which can cause moderate to severe pain during any movement of the leg. It can also lead to ulcers, sores and, in severe cases, gangrene, which can lead to amputation. In an animal model, stem cell injections were shown to improve blood flow and circulation in problematic areas. They also altered the gene expression of surrounding cells to reduce inflammation, which typically exacerbates the problem. PAD currently lacks effective treatments options and is difficult to diagnose until it has progressed severely hence, the study points to a potential breakthrough therapy that utilizes the patient’s own stem cells.

 

Read More

Topics: diabetic wounds, PAD, autologous stem cells, stem cell treatments, regenerative medicine, diabetic treatment

Growing Functional Organs with Stem Cells

Posted by pamela@stemsave.com on Nov 1, 2017 4:45:00 PM

Researchers at Harvard Medical School have utilized stem cells to grow a functional small intestine in a lab. Using human stem cells, the researchers were able to differentiate them into intestinal cells and induced them to form a fully functional intestinal tissue. Previous studies have been successful at growing miniscule segments of the organ, but this innovative study has homed in on a method for compiling smaller, stem cell-derived tissue into an organoid that could soon be available to use in transplants as replacement for damaged organs. Patients who suffer from gastrointestinal tract ailments could benefit from this, in addition to patients who have had portions of their digestive tracts removed due to cancer.

Read More

Topics: regenerative medicine, lab grown organs, autologous stem cells, stem cell treatments

Stem Cell Wound Treatment Enters Phase II Clinical Trials

Posted by taylor@stemsave.com on Oct 19, 2017 5:00:00 PM

Sanford Health is heading into the second phase of clinical trials involving autologous (the patient’s own) stem cells to treat non-healing wounds and ulcers on the body. The trial will be recruiting patients 18 and older to continue testing the efficacy of stem cells in treating wounds that would not heal due to a person’s preexisting conditions. People with weakened immune systems could also benefit from this treatment, given that it would prevent the enormous risk of infection that non-healing wounds pose. Additionally, the treatment could even be applied to heal wounds from surgeries, expediting recovery time dramatically.

Read More

Topics: autologous stem cells, non-healing wounds, diabetic wounds, leg ulcers, stem cell treatments, regenerative medicine

Dental Stem Cell Therapy for Stroke Victims

Posted by davids@stemsave.com on Oct 12, 2017 4:45:00 PM

Researchers at Adelaide University in Australia are conducting research into the application of dental pulp stem cells to treat neurological damage due to stroke. Cell based treatments for the detrimental effects of stroke could improve quality of life by promoting neural regeneration, neuroplasticity, vascularization and immuno-modulation. When an ischemic stroke occurs, a major artery in the brain becomes blocked due to a blood clot, and this deprives part of the brain of nutrients and oxygen. Depending on the length of the block, major parts of the brain can suffer neuronal death causing severe and permanent damage. This damage includes paralysis, vision problems, memory loss and language difficulties. Currently, there are no effective treatments for the effects of stroke, and because dental stem cells are derived from the neural crest during embryonic development, a dental stem cell based treatment shows promise in significantly improving the quality of life for stroke victims.

Read More

Topics: mesenchymal stem cells, dental stem cells, stroke treatments, Chronic Ischemic Heart Disease, regenerative medicine

Dental Stem Cells for Bone Regeneration - Clinical Trial Underway

Posted by taylor@stemsave.com on Oct 10, 2017 4:45:00 PM

The team at Central Hospital in Nancy, France is conducting research utilizing dental stem cells to regrow and restore bone density. The trial aims to direct dental mesenchymal stem cells to differentiate into engineered osteoblasts, as well as promoting angiogenesis, which is necessary given that bones typically lack sufficient vascularization to make efficient repairs. The benefit of using autologous [the patient’s own] stem cells makes this an effective treatment option that does not pose a risk of rejection. By directing stem cells to promote bone mineralization and endothelial growth, as well as creating vascularization to promote healing, stem cells can be applied to a variety of bone trauma and deficiencies.

Read More

Topics: mesenchymal stem cells, bank dental stem cells, dental stem cell use, regenerative medicine, bone regeneration

AAOMS

AAOMS - American Association of Oral and Maxillofacial Surgeons

 

As the industry leader, StemSave is the only stem cell banking service to be designated as an ASI approved program.

    Recent Posts

    Posts by Topic

    see all