stemsavelogo

Select Country

877-783-6728 (877-StemSave)

StemSave Blog

Stem Cells Take Flight

Posted by taylor@stemsave.com on Jul 3, 2018 10:29:00 AM


Organs-on-Chips are set to be studied in zero gravity at the International Space Station. Astronauts who go into space have been known to experience changes in their health and immune response, but until recently, the reasons for these changes remained largely unknown. Previously, animals were sent as a way to determine the long-term health effects of being in space. However, since every organism functions differently, this approach, while useful, had obvious drawbacks. Organs-on-Chips [OOCs] are an innovation created by a collaborative effort of the Wyss Institute of Harvard University and the Massachusetts Institute of Technology, among others. OOCs are small vessels that utilize stem cells to create various tissue types to simulate the conditions inside human organs. If the tests prove successful, these tiny chips  will be the closest researchers get to estimating the effects of space travel on human organ function - aside from sending out actual astronauts.

Read More

Topics: stem cell organs, organs on chips, stem cell research, regenerative medicine

Stem Cell Generated Organs

Posted by maxi@stemsave.com on Jun 9, 2018 3:47:00 PM

In a breakthrough study, 3D printed organs have been vascularized to sustain the growing tissue and bring printed organs one step closer to fruition. Currently, hundreds of thousands of Americans are on waiting lists for life-saving organs, and 20 patients die waiting each day. This innovative research by Prellis Biologics is making headway to allow for more effective and efficient printing of organs. 3D printing has had to overcome 2 major obstacles: the development of a biological scaffold to allow for three dimensional growth of cells into the desired organs, and the oxygenation and nutrient delivery to the growing tissue for prolonged periods of printing time using blood vessels. Though a biological medium for 3D tissue growth has already been developed, Prellis has created a more effective an efficient method of vascularizing the growing organ tissue, as well as expediting the printing process as a whole.

Read More

Topics: stem cell 3D printing, printed organs, stem cell organs, regenerative treatments

Stem Cell Grown Mini Hearts Expedite Treatments

Posted by anna@stemsave.com on Jun 3, 2018 12:11:00 PM

Researchers at Novoheart have created functional mini heart organoids, which are the first of their kind to contain chambers, like those found in fully grown human hearts. This advancement in stem cell engineering will expedite drug trials, which could bring potential cures to those who need them much sooner. Typically, new drugs take many years and require exorbitant resources to bring them to market, but Novoheart’s mini heart organoids look to disrupt the status quo and speed up the development of treatment options. Since these hearts have tissues differentiated from adult stem cells, the organoids behave and react to treatments like real hearts would, which allows researchers to detect and eliminate detrimental side effects long before reaching clinical trials. Additionally, the heart organoids can be used to understand cardiovascular diseases, which affect millions of people around the world.

Read More

Topics: heart regeneration, stem cell organs, regenerative treatments

Stem Cell Grown Brains Aid Neuro Disorder Research

Posted by davids@stemsave.com on Mar 26, 2018 3:30:00 PM

Researchers at UC Davis have created lab-grown brain organoids that are complex and vascularized, dramatically furthering research for brain disorders. Given that the human brain is one of the most complex anatomical structures and researchers are still discovering new functions and neuronal pathways, having brain organoids in vitro greatly expedites this research. When several small brain organoids joined together, researchers observed nerve impulses among the structures, signifying cellular communication that resembles that of fully-grown human brains. In a recent development, these organoids have vascularized and have brought researchers one step closer to both understanding neurological disorders, as well as helping patients replace damaged neurons from conditions like strokes, Alzheimer’s etc.

Read More

Topics: neurological treatments, neurological disorders, treating Alzheimer's, stroke treatments, stem cell organs

AAOMS

AAOMS - American Association of Oral and Maxillofacial Surgeons

 

As the industry leader, StemSave is the only stem cell banking service to be designated as an ASI approved program.

    Recent Posts

    Posts by Topic

    see all