stemsavelogo

Select Country

877-783-6728 (877-StemSave)

StemSave Blog

How Dental Stem Cells Accelerate Wound Healing

Posted by barb@stemsave.com on Oct 2, 2019 12:01:00 PM

Researchers at the University of Pennsylvania are homing in on how the regenerative properties of dental stem cells can be used to heal wounds and injuries in patients suffering from a variety of afflictions. The catalyst for the research is the numerous studies demonstrating that oral gingival wounds heal faster than cutaneous wounds and exhibit minimal scar formation.  To expand the potential applications of these fast healing stem cells, Professor Songtao Shi at Penn Dental Medicine is collaborating with researchers from Peking University, University of Southern California, the Children’s Hospital of Philadelphia and the National Institute of Dental and Craniofacial Research. The researchers homed in on particular proteins secreted by gingival stem cells (a type of dental stem cells) that appeared to rapidly accelerate wound healing in gums compared to wounds on the skin. The researchers looked to utilize these stem cells, and their protein secretions, to test whether they would accelerate healing elsewhere in the body.

Read More

Topics: dental stem cell use

Stem Cells Are Key for Long-Term Space Travel

Posted by taylor@stemsave.com on Sep 23, 2019 2:39:00 PM

Aleph Farms, a pioneering lab-grown meat company, has sent stem cells to the International Space Station (ISS) and demonstrated that they can be differentiated into lab-grown meat in zero gravity conditions. The scientists at the ISS used a 3D bioprinting technique to culture and develop the stem cells into bovine muscle tissue, and the cells developed just like they have successfully done so on Earth. Astronauts are concerned with every gram of additional materials that they take on their voyages, and one of the main hurdles to long-term space exploration is the inability to pack enough resources to make longer trips.

Read More

Topics: lab grown meat

Dental Pulp Stem Cells Treat Stress Urinary Incontinence

Posted by devin@stemsave.com on Sep 17, 2019 11:30:00 AM

Researchers are using human dental pulp stem cells (DPSCs) to treat stress urinary incontinence (SUI), an involuntary bladder leakage due to an increase in pressure or damage to the urethral sphincter. Treatments for this condition typically target the symptoms rather than the cause of SUI. As this condition affects over 200 million people worldwide, developing a viable treatment option, as opposed to symptom control, will improve the quality of life of millions of people. Additionally, since this study utilizes human DPSCs, patients who have banked their dental stem cells will have access to this treatment option without the need to find a suitable donor match or assume the risk of rejection.

Read More

Topics: dental pulp stem cells

Curing HIV and Leukemia with Stem Cells

Posted by anna@stemsave.com on Sep 11, 2019 10:49:00 AM

A patient diagnosed with both HIV and leukemia has undergone a revolutionary gene therapy combined with a stem cell transplant. The most common treatment for leukemia is radiation and chemotherapy to eliminate the patient’s malfunctioning blood cells, which are created in the bone marrow. Following radiation and chemo, patients typically receive intravenous infusions of healthy blood stem cells to re-establish healthy bone marrow. However, the researchers took this treatment one step further by editing the new stem cells to disrupt the effect of a gene called CCR5, which the HIV virus typically uses to infect immune cells. In doing so, the doctors tackled both the patient’s leukemia and HIV in one revolutionary therapy.

Read More

Patients’ Own Stem Cells Used in MS Clinical Trial

Posted by maxi@stemsave.com on Sep 6, 2019 10:32:00 AM

Researchers have determined that an autologous mesenchymal stem cell treatment for progressive multiple sclerosis (MS) is safe and effective. Mesenchymal stem cells [the same type of stem cells found in teeth] have been shown to help support neurons that are damaged by the immune system in patients with MS. Researchers at Hadassah University in Israel have successfully completed a clinical trial that tested the application of patients’ own cells to help repair and support neurons affected by MS. The trial involved obtaining stem cells from patients, culturing and multiplying them in the lab, and infusing them back either intravenously or by direct injection into the spinal cord.

Read More

CRISPR Advance Enables Simultaneous Multi-Gene Editing

Posted by anna@stemsave.com on Sep 2, 2019 12:34:00 PM

Researchers at ETH Zurich have developed advanced CRISPR gene editing technology to modify an entire gene network in one shot. This is a significant step forward in correcting genetic disorders, as many genetic abnormalities and mutations that lead to palpable symptoms are controlled by several genes in various locations on the genome. The advance resulted from the use of a CRISPR enzyme called Cas12a, as opposed to Cas9, which is currently used for all gene editing done with the CRISP technology.

Read More

Topics: gene therapy, CRISPR

Lasers and Stem Cells Join Forces to 3D-Bioprint Organs

Posted by maxi@stemsave.com on Aug 28, 2019 4:05:00 PM

 

A research team at the Netherlands’ Utrecht University, in collaboration with the Swiss EMPA Research Institute, have developed a new 3D bio-printer that significantly decreases printing times, without harming or damaging the cells being printed. Conventional bioprinting takes hours, and even days for some complex structures, which creates the problem of maintaining the live cells in the structure that is printed over a prolonged period. The technique involves using a laser beam aimed at a printer that is depositing a light-sensitive hydrogel that contains stem cells. The laser can precisely target a structure within the gel and solidify it within seconds, without affecting the contained stem cells.

Read More

Topics: 3D printed organs

Stem Cells Further Understanding of Disease Development

Posted by pamela@stemsave.com on Aug 23, 2019 11:37:00 AM

Researchers at Harvard University School of Engineering and Applied Sciences are utilizing stem cells and nano-electronics to study cell differentiation and disease models outside the body. The researchers are utilizing the latest advances in organ 3D printing and combining these organs with tiny sensors in culture in order to better understand human cells and tissues and gain invaluable insight, without having to worry about finding patients with specific, rare disorders. The researchers found a way to create a network of interconnected sensors and seed this structure with stem cells to have an organ develop around the sensors and be constantly monitored and observed from the cellular level. This is something that cannot be done with actual human organs, and full-sized sensors are often too large to fit into strategic places in organ tissues.

Read More

Topics: stem cell organs

Tooth Repair with Dental Stem Cells

Posted by maxi@stemsave.com on Aug 19, 2019 11:09:00 AM

Researchers at the University of Plymouth Peninsula Dental School have discovered a new class of dental stem cells that could help regenerate teeth from within. The researchers studied rodents, who have constantly growing incisors and discovered a new class of mesenchymal stem cells, which use a genetic marker to communicate an injury and stimulate regeneration of the tooth. The gene in question was identified as Dlk1 and could offer insight into manipulating human dental pulp stem cells to regenerate teeth affected by decay and physical injury.

Read More

Topics: regrowing teeth, natural tooth repair

Bioprinting Full-Scale Hearts with Stem Cells

Posted by hunter@stemsave.com on Aug 14, 2019 11:01:00 AM

 

Researchers at Carnegie Mellon University are combining stem cells and collagen to create organized printed structures that could be assembled into full-sized hearts. The breakthrough here involves the ability to keep the collagen in the desired shape throughout the printing process, since it initially deposits as a liquid. The researchers used a new hydrogel to temporarily support the deposited collagen, and then easily removed the gel by heating the structure to room temperature. The researchers also used 3D imaging to create valves, ventricles and blood vessels, seeding them with stem cells to then be assembled into full-sized hearts.

Read More
AAOMS

AAOMS - American Association of Oral and Maxillofacial Surgeons

 

As the industry leader, StemSave is the only stem cell banking service to be designated as an ASI approved program.

    Recent Posts

    Posts by Topic

    see all