stemsavelogo

Select Country

877-783-6728 (877-StemSave)

StemSave Blog

hunter@stemsave.com

Recent Posts

Bioprinting Full-Scale Hearts with Stem Cells

Posted by hunter@stemsave.com on Aug 14, 2019 11:01:00 AM

 

Researchers at Carnegie Mellon University are combining stem cells and collagen to create organized printed structures that could be assembled into full-sized hearts. The breakthrough here involves the ability to keep the collagen in the desired shape throughout the printing process, since it initially deposits as a liquid. The researchers used a new hydrogel to temporarily support the deposited collagen, and then easily removed the gel by heating the structure to room temperature. The researchers also used 3D imaging to create valves, ventricles and blood vessels, seeding them with stem cells to then be assembled into full-sized hearts.

Read More

Stem Cells on the Menu

Posted by hunter@stemsave.com on Jul 12, 2019 2:13:00 PM

Biotechnology company Memphis Meats has successfully grown chicken meat from stem cells in a lab, bypassing the cost and environmental toll of raising poultry. The stem cells were obtained from a live chicken and grown in the lab in a nutrient-rich medium until the cells formed into a piece of meat. The meat grown in the lab is virtually indistinguishable from meat obtained through traditional methods. Bypassing current livestock industry practices eliminates unnecessary harm to the animals,  avoids the need for antibiotics and growth hormones,and mitigates environmental degradation. Memphis Meats, having successfully created lab-grown beef and duck, have now expanded their culturing protocols to chicken, expanding their expertise in the field of stem cell culturing.

Read More

Topics: lab grown meat

One Step Closer to Treating Diabetes with Stem Cells

Posted by hunter@stemsave.com on May 8, 2019 11:19:00 AM

Researchers at the Harvard University’s Stem Cell Institute have engineered stem cells to become insulin producing cells, potentially providing an important source of pancreatic cells for the development of more effective treatment alternatives for millions of diabetics around the world. The technique increased insulin-producing cell yield from 30% to 80% by targeting the production of a specific protein utilized by insulin-producing beta cells. This enabled the researchers to concentrate the stem cells and yield more beta cells that can then be transplanted into diabetic individuals. Additionally, the concentration of cells should allow researchers to use smaller and less invasive devices to deliver the therapeutic cells in clinically relevant numbers.

Read More

Topics: insulin secreting cells, treating diabetes, stem cell diabetes treatment

3D Printers Mend Broken Hearts

Posted by hunter@stemsave.com on Apr 22, 2019 4:18:00 PM

Researchers in Tel Aviv have printed the first vascularized heart made from human stem cells. For the first time, researchers successfully printed heart tissue along with the blood vessels necessary for the heart to be operational. In a miniaturized version, the researchers also incorporated the chambers of the heart. The next step is scaling up the size of the printed heart to the size typically found in humans.  Researchers believe a successful scaling up of the process would accelerate parallel efforts to bio-engineer organs in vitro and ameliorate the vast organ shortage, particularly with hearts.

Read More

Topics: dental stem cells, stem cell banking, stem cell 3D printing, stem cell printing

Retinal Disease Blindness Treated with Stem Cells in Phase II Clinical Trial

Posted by hunter@stemsave.com on Mar 11, 2019 2:15:00 PM

A Phase II clinical trial is currently underway to evaluate the efficacy of retinal progenitor cells in treating a retinitis pigmentosa that causes visual impairment and, in severe cases, blindness. In an earlier clinical trial, the stem cells were used to create new photo receptors, with patients reporting improvements in vision. In follow-ups conducted between 18 days and 2 months following treatment, patients were able to read three additional lines in a standard eye test chart.

Read More

Topics: retinal blindness, stem cell treatment

Curing Type I Diabetes with Stem Cells

Posted by hunter@stemsave.com on Jan 29, 2019 3:43:00 PM

Researchers at University of California San Francisco (UCSF) have created insulin producing cells in vitro that successfully produced insulin in vivo for Type I Diabetes patients. Type I diabetics experience an autoimmune disorder which attacks and destroys the body’s insulin-producing beta cells. These patients have to take continuous insulin injections and closely and constantly monitor their blood sugar levels, since extremely high or low blood sugar levels cause diabetic ketoacidosis or hyperglycemic shock, leading to coma and death. Though diabetes is currently manageable, patients must be constantly vigilant since their bodies’ inability to regulate blood sugar often leads to other systemic diseases such as blood vessel damage, neuropathy and nephropathy, just to name a few. The study from USCF involved directing human pancreatic stem cells to become insulin-producing islets cells in the lab. In an animal model, the cells were then implanted back into the body and were shown to produce insulin in response to blood sugar spikes. Additionally, the islets produced other essential hormones for blood sugar regulation, fully resembling normal pancreatic islets.


Read More

Topics: Diabetes, Type-1 Diabetes, autoimmune disease, treating diabetes, stem cell treatment

DoD Growing Bones With Stem Cells to Treat Wounded Soldiers

Posted by hunter@stemsave.com on Dec 17, 2018 11:17:00 AM

The U.S. Department of Defense [DOD] has approved a grant of $2 million to the University of Arizona [UA] to advance the development of their technology combining 3D printing and stem cell grafting to create a better alternative to conventional bone replacement. Current standard of care for shattered bones involves using cadaver bones and support rods to replace bones entirely. However, these treatments are often ephemeral since the cadaver bone is dead and becomes increasingly fragile over time. The technique being developed by UA utilizes advanced 3D printing to create a scaffold that mimics the structure of bone and then seeds it with the patient’s own stem cells, along with calcium, to grow a bone that will be sturdier. Since the technique will use the patient’s own stem cells, it virtually eliminates the possibility of rejection. 

Read More

Topics: bone trauma, bone grafting, stem cell graft

Replacement Spinal Discs Created with Stem Cells

Posted by hunter@stemsave.com on Nov 9, 2018 11:00:00 AM

Researchers at the University of Pennsylvania have developed bio-engineered replacement spinal discs. Intervertebral discs are located between the bones of the spine to absorb shock, prevent the bones from painfully rubbing together and protect the nerves of the spinal cord. Degraded discs cause intense chronic pain, which is often debilitating and diminishes a person’s quality of life. The current standard of care involves replacing a damaged disc with a synthetic replacement, which does alleviate some pain, but does not compare to real cartilage. In an animal model, autologous (the patient’s own) mesenchymal stem cells (MSCs) were seeded into a biological scaffold where they differentiated into cartilage tissue. When the disc was fully-formed, it was surgically inserted back into the spine, and in a 20 week follow-up the disc maintained its structure and performed as normal.

Read More

Topics: cartilage regeneration, spinal disc regeneration, stem cell grown cartilage, stem cell scaffold, spinal disc replacement

Stem Cells Used to Repair Cleft Palates in Children

Posted by hunter@stemsave.com on Sep 21, 2018 1:15:00 PM

Researchers at Hospital De San Jose in Colombia have utilized autologous (the patients’ own) stem cells to regenerate bone in children with cleft palates, greatly improving their quality of life by replacing an often arduous, surgically invasive procedure with a stem cell graft.The children partaking in the study were born with cleft palates, which typically require surgery and extensive grafting with bone from elsewhere in the body to create enough bone matter to support future teeth. When the children were born, their parents made the wise decision to bank their children’s powerful cord blood stem cells, which became vital to the success of this later treatment. This groundbreaking study used the patients’ own stem cells and a biological scaffold to allow the stem cells to grow into bone and fill the cleft. The ability to use autologous stem cells posed no risk of rejection to the patients, and in 5 and 10-year follow ups, the patients showed healthy bone development and experienced no adverse effects.

Read More

Topics: bone regeneration, regenerative medicine, autologous stem cells, investing in future health, stem cell graft, stem cell banking, cleft palate repair

CRISPR Technology Accelerates

Posted by hunter@stemsave.com on May 9, 2018 9:00:00 AM

A collaborative effort between researchers at Stanford University, the Joint Institute of Metrology and Biology, and the National Institute of Standards and Technology has developed a modified and more targeted version of CRISPR, which is more efficient at editing single nucleotide mutations. The new system is called MAGESTIC (multiplexed, accurate genome-editing through short, trackable, integrated cellular barcodes), and it has been shown to successfully modify genes by accurately targeting the location of defective genes. MAGESTIC ameliorates and addresses the current shortcomings of gene-editing technology by enhancing the ability of CRISPR to target single genes [out of millions] with the purpose of correcting specific mutations.

Read More

Topics: stem cell therapy, CRISPR, Genetic Diseases, genetic engineering

AAOMS

AAOMS - American Association of Oral and Maxillofacial Surgeons

 

As the industry leader, StemSave is the only stem cell banking service to be designated as an ASI approved program.

    Recent Posts

    Posts by Topic

    see all